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ABSTRACT 

A natural circulation loop with water as the 

circulating fluid was studied for a range of operation 

covering two-phase flow. Periodic oscillations of the 

- flow rate and fluid temperature occur even with constant 

t heatlnput and constant cooling water properties for the 

heat exchangers. Several conclusions concerning the 

stability of operation are given. Use Is made of the 

theoretical analysis of an open-ended system, and an 

analogue computer. For use in a more detailed numerical 

analysis, the equation of motion, the continuity equation, 

and the energy equation are presented, for a transient two- 

phase flow .model. 



i I 

The Oscillatory?Behavior of a 

Two-Phase Natural Circulation Loop 

by 
Eugene H. Wissler, H. S. Isbin, and N. R. Amundson 

Introduction 

A program of study of the transient operation of 

natural circulation loops has been underway at the university 

of Minnesota (l), and this paper is concerned with the 

oscillatory behavior of a two-phase natural circulation 

loop. These studies are of interest for the emergency 

cooling of nuclear reactors and in the design of boiling 

water reactors. The literature survey pertaining to the 

transient operation of a natural circulation loop is 

given by Alstad, Isbin, Amundson and Silvers (1), and a 

survey on two-phase flow is given by Isbin, Hoen and Mosher (2). 

Experimental Loop 

Figure 1 is a schematic diagram of the natural 

convection loop which was studied. The loop was constructed 

primarily of 16 gage, 1 inch O.D. (0.872 inch I.D.) hard 

drawn brass tubing. The major features of the loop are 

described in reference (l). During a natural circulation 

run, the flowrators were by-passed and only the electro- 

magnetic flowmeter was used. Normally the surge tank, 
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E,, was not used for two-phase natural circulation runs. 

For those runs in which the pressure at one point in the 

loop was held constant, the gate valve between the surge 

tank, E2, and the loop was opened) for the constant volume 

run, the gate valve was closed. A heater and pump were 

installed to maintain the cooling water supply at 5 gpm and 

at 130°F. 

Theoretical Analysis 

The continuity equation, the equation 
General Equations 

of motion and the energy equation for 

a viscous fluid flowing in a region of general geometry 

were formulated for a phase having continuous properties. 

A similar set of equations were derived for flow across a 

surface of discontinuity. The combination of these two 

sets of equations permits one to write the equations for 

the two-phase flow. An annular flow model was selected 

to illustrate some of the essential properties of two-phase 

flow. The model is sufficiently simple to permit attempting 

a numerical solution. Each phase is assumed to flow 

through a well defined cross-sectional area with a uniform 

velocity with the reservation that the liquid velocity at 

the wall must equal zero. Further, the steam and water 

phases are assumed to be In equilibrium; that is, p and 

T correspond to the saturation pressure and temperature. 
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For these conditions, the continuity equation may be written 

as 

Aj£= . 2ÜL (1) 

The equation of motion for upward flow through a pipe of 

constant diameter becomes 

1*11.1 *<*!*> + AH-A^-pz'-APf    (2) 
So Bt  Sc  ox       —   ec 

Finally, the energy equation is 

,   cHpH)   , ^t*»gH)       A*ß._ |_r(kA    +kA)lT]     () A     5t    +       öS J-öt;      Q   + fx uVw + W"bxJ    V3; 

where    2irr k (2^)  = Q' = rate at which heat is con- p w or' r p      ducted through the pipe. 

The terms 4 and $„ represent the ratio of the true 

rate of transport to the rate of transport of the mean 

flow for momentum and energy respectively. If both phases 

have the same linear velocity, «^ and $2 are unity. 

The three functions ^, <|>2 and Ff were deter- 

mined experimentally from steady state data. It was found 

that <|>,  and $_ could be correlated as functions of 

p alone, and that 

Ff = a(p)U1'79 W 

where a(p) is a function of p. Figures 2, 3 and h 

illustrate the variation of $x, <t>2 and a(p) with p. 
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Equations (1) through (4) have been applied to a natural 

circulation loop In the form of finite difference equations. 

The discussion of these equations is not included in this 

paper for the numerical calculations using the SEAC 

(National Bureau of Standard's digital computer, Standard 

Eastern Automatic Computer) have not been successfully 

completed. 

An insight on the factors which 
Stability Analyses 
 .  . determine the stability of a 

natural convection system is gained through the analysis 

of an open-ended loop, such as shown in Figure 5-    The 

fluid entering the heater always has the constant temperature 

T » and the velocity of the stream is fixed by the density 
oi 

difference between the hot and cold leg. For any constant 

heat input, one may define a state of equilibrium in which 

the difference in weight of the two legs is just equal to 

the frictional resistance to flow. Under certain conditions 

this system may be unstable; that is a small deviation 

from the equilibrium temperature distribution or the 

equilibrium velocity may be propagated in space or time 

with increasing amplitude. For example, if a velocity 

perturbation of the form, ^sinost, is present, under 

what conditions could the temperature perturbation which is 

generated cause the driving force that sustains the velocity 
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disturbance? The problem has been treated analytically 

for a one-phase fluid (3), and the following conclusions 

were obtained? 

a) If an oscillatory flow rate is to be possible, 

the force cannot be generated in the heater; it must be 

generated in the vertical riser. 

b) The product of the coefficient of expansion 

of the fluid and the vertical height of the riser must 

exceed a certain value (defined by an analytical expression) 

if the velocity perturbation is to be sustained. 

c) The period of oscillation will be approxi- 

mately equal to the residence time of the fluid in the 

heater and the vertical riser. 

In order to predict the period for a closed 

loop, a problem was solved on a Reeves Electronic 

Analogue Computer. The number of non-linear terms was 

limited to 16, and the model used was necessarily a 

simple one. For such a problem, the period of the oscilla- 

tions should be meaningful even though the wave shape is 

not correct, if the period is a function of only the 

geometry and the mean velocity. The computer could handle 

only ten subdivisions, with the driving force expressed as 

a linear function of all ten enthalpies, and the frictional 

force as a quadratic function of the velocity. The number 
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of available summing amplifiers limited the problem to 

the case in which boiling occurs only at the top sub- 

division of the vertical riser. The equations solved 

were of the following form: 

dt    TÄH)n 
(iIn " Hn-lJ ' TÄÄ^rnpOp 

dV    rn n n 
dt     -   A 

Pn - Axn 

«1  ^ 

(5) 

(6) 

The loop subdivisions are given in Figure 6. 
EL + H^ 

For section 1, Q = Qj, for section 5* Q5 =~bV(-2-g  ho) 

where the cooler heat transfer coefficient is taken to be 

a linear function of velocity, and all remaining Q's are 

taken equal to sero. The density at point n is written as 

Pn " Pn * %  <Hn " V (7) 
o o 

and the wean density of the nth subinterval is set equal 

to the average of the densities at n and n-1. 

A stable solution was found if the coefficient 

of expansion of water is used for all values of <3. .  An 

oscillatory solution was obtained,, Figure 7>  If vaporization 

to a few per cent quality wsj»e assumed in the top section 

of the vertical riser ( «^ = - 9-500, all other s^'s = 

-0.024 lb/cu.ft.°F). 
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Results 

Two steady equilibrium modes of operation were 

possible when the pressure at one point in the loop is 

held constant (surge tank Eg open to the atmosphere). 

For a very low heat input the water temperature in the 

riser never exceeds the boiling point and a state of 

stable equilibrium nay be defined. For a very high heat 

input, the entire riser contains both steam and water, 

and a maximum flow rate Is obtained. Oscillatory modes 

of operation result for the intermediate heat input5. An 

illustration of the manner in which the period and amplitude 

depend on the heat input is given In Figures 8 to 12. The 

period and amplitude of the oscillations are determined by 

the mean temperature level of the fluid in the vertical 

riser. 

The period was inversely proportional to the 

mean velocity providing some steam is in the riser at all 

times. Vßien the system does not contain steam during 

most of the cycle, the period is considerably longer than 

that predicted by the extrapolation of the higher flow 

rate periods. 

In the analogue computer problem, Q,^ = 3-16 Btu/sec, 

and the period was 149 seconds, which is about 21 seconds 

I 
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less than the experimentally observed value for the lowest 

flow rate. The computed period would be expected to be 

less than the observed value, since the density function 

used in the top subinterval in the riser was a two-phase 

density function. Further, the density function used 

for the boiling subinterval was linear and it was not 

possible to exclude densities greater than the density of 

saturated water. A special non-linear element is required 

to generate a density function with the correct properties. 

As a result, the computed mean flow rate is less than that 

which could actually exist; however, the flow rate curve 

and enthalpy curves have essentially the same shape as 

the experimentally determined ones. A larger computer 

is required for solving the stability problem at the higher 

heat fluxes. 

Conclusions 

A natural circulation loop can be made unstable 

in the sense that a small displacement from the equilibrium 

state leads to undamped oscillations. Stable operations 

result when the fluid temperature in the riser is restricted 

to values less than the boiling point, and when the heat 

input reaches a value such that the frictlonal force 
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changes more rapidly than the driving force. The theoreti- 

cal treatment of an open-ended natural circulation system 

and the solution of a simple problem using an analogue 

computer have lent support to the general conclusions 

of the stability analyses. A detailed numerical analyses 

is in progress on a large digital computer. 

j 
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NOTATION 

Equations 1 through 4 

A   = cross-section area for flow 

W   = total mass flow rate 

x   = distance along streamline 

t   = time 

g   = local acceleration of gravity; g0 = conversion factor 

in Newton's law of motion 

z»      = slope of pipe at x 

F   = wall of frlctional force 

p   = fluid density, p s j  (Awpw + Ag pg) 

*   w « Vw
Vw + VsVs _ W_ 

V   = volumetric flow rate. V a -55 $£" 

H   = specific fluid enthalpy. H s fptAwPw\ 
+ VsHs5 

*   Ww^Ws2 , 4   VwVw + VS
YsHs 

k   = thermal conductivity 

T   = fluid temperature 

p   = fluid pressure 



r   = radius, r = pipe radius 

Q'  = rate at which heat is conducted through pipe. 

a(p) = an empirically defined function for Eq.4 for two-phase 

pressure drop. 

Subscripts 

s   = steam phase;  w = liquid water phase 

Equations 5 through 7 

The energy balance is reduced to a heat balance 

H   = specific enthalpy 

Q   = rate at which heat is added to fluid 

V   = volumetric flow rate 

F   = frictional force. 
i  R                 1-8K                    0.72F - 

F = AV1-0 £?F0 + -^-2. (V-V0) +  20- (V-Vo)2 

o •o     w    V_^     ° 
F is the frictional force corresponding to a volumetric 

flow rate V o. 

h   = cooler heat transfer coefficient 

Ax  = length of sublnterval; z    - vertical height of sublnterval 

p   = density, p~ = mean density in a sublnterval 

C   = heat capacity 

«L  = a constant related to the coefficient of expansion of 

water and defined by Eq. 7 

For the computer problem, for n = 1, 2, and 3, H  = l82Btu/lb, 
o 

pn = 59-781 lb/cu.ft., «fn = - 0.024 lb/cu.ft.°F; n = 4, 



H  = 182, p  = 37.500, eL = -9-500; n = 5 through 10, 
no no n 

U  = 153s p  = 60.477, «(,=■- 0.024. V0 = 0.0025 ou.ft./sec, 
no        °o                  EL + % 
Q = 3.16 Btu/sec, and Q5 = - 25.0V(-^~2 89.6) Btu/sec. 
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